Recapitulating cranial osteogenesis with neural crest cells in 3-D microenvironments

Bumjin Namkoong a,b,1, Sinan Güven c,d,1, Shwathy Ramesan e, Volha Liaudanskaya c, Arhat Abzhanov a,f,g,h,2, Utkan Demirci c,e,2

a Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
b Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
c Demirci BAMM Labs, Canary Center at Stanford for Early Cancer Detection, Department of Radiology, Department of Electrical Engineering (By courtesy), Stanford School of Medicine, Palo Alto, CA 94304, USA
d Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, 35350 Izmir, Turkey
e Demirci BAMM Labs, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
f Demirci BAMM Labs, Canary Center at Stanford for Early Cancer Detection, Department of Radiology, Department of Electrical Engineering (By courtesy), Stanford School of Medicine, Palo Alto, CA 94304, USA
h Current address: Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Keywords:
3-D culture
Controlling 3-D tissue microenvironment
Ectodermal to mesodermal differentiation
Bone

A R T I C L E I N F O
Article info
Received 9 June 2015
Received in revised form 11 November 2015
Accepted 2 December 2015
Available online 7 December 2015

ABSTRACT
The experimental systems that recapitulate the complexity of native tissues and enable precise control over the microenvironment are becoming essential for the pre-clinical tests of therapeutics and tissue engineering. Here, we described a strategy to develop an in vitro platform to study the developmental biology of craniofacial osteogenesis. In this study, we directly osteo-differentiated cranial neural crest cells (CNCCs) in a 3-D in vitro bioengineered microenvironment. Cells were encapsulated in the gelatin-based photo-crosslinkable hydrogel and cultured up to three weeks. We demonstrated that this platform allows efficient differentiation of p75 positive CNCCs to cells expressing osteogenic markers corresponding to the sequential developmental phases of intramembranous ossification. During the course of culture, we observed a decrease in the expression of early osteogenic marker Runx2, while the other mature osteoblast and osteocyte markers such as Osterix, Osteocalcin, Osteopontin and Bone sialoprotein increased. We analyzed the ossification of the secreted matrix with alkaline phosphatase and quantified the newly secreted hydroxyapatite. The Field Emission Scanning Electron Microscope (FESEM) images of the bioengineered hydrogel constructs revealed the native-like osteocytes, mature osteoblasts, and cranial bone tissue morphologies with canaliculus-like intercellular connections. This platform provides a broadly applicable model system to potentially study diseases involving primarily embryonic craniofacial bone disorders, where direct diagnosis and adequate animal disease models are limited.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Tissues and organs comprise cells and intercellular components that are highly organized at the organismic level, which have a dynamic, three-dimensional (3-D) nature especially highlighted during embryonic development. Tissue functionality arises from the finely orchestrated interactions of all such elements, which are regulated by the multitude of chemical and physical stimuli [1–4]. Tissue engineering and regenerative medicine hold a great promise to create models that mimic the natural biological tissue microenvironments and recapitulate tissue and organ formation and maturation. Cell-encapsulating 3-D tissue models are emerging tools that bring inspiring in vitro venues to study the development of complex physiological systems. These models overcome the limitations of the two-dimensional (2-D) monolayer cultures in studying the significantly complex biological mechanisms involved in multicellular behavior [5,6]. Microscale tissue models can efficiently utilize rare cells that are challenging for monolayer expansion [7]. Such microscale models are capable of recapitulating regulatory dynamics of the germ layers and cellular condensations forming at the early developmental stages. The design and fabrication of 3-D microenvironments with well-defined architecture and...
material compositions specific for progenitor cell types are essential for mimicking intricate events taking place in vivo. Cell-encapsulating hydrogel microenvironments are fabricated by gelation of extracellular matrix mimicry polymer solutions using various techniques including thermal, enzymatic, chemical and UV photo-crosslinking methods. In particular, the flexibility to fine-tune the microscale tissue size and shape, together with the high throughput and reproducibility aspect of the UV photo-crosslinking platform, underscores its broad utility to create successful tissue models [8,9].

Often referred to as the “fourth embryonic germ layer” [10,11], neural crest is a transient, multipotent embryonic population of cells, which migrate from their site of origin at the dorsal neural tube and differentiate into a diverse array of specialized cell types during vertebrate development [12]. Cranial neural crest cells (CNCCs) can differentiate into chondrogenic and osteogenic cells that, in turn, generate most of the cranial skeletal tissues (both bones and cartilages) in the vertebrate head [12,13]. Cranial dermal bones are unique in the way they are formed – dermal bones form directly from the neural crest of the cranial dermis without forming a cartilage precursor, through a process known as intramembranous ossification [12,14–20]. Despite these unique developmental features of the cranial bones, most of our current understanding of bone development, in general, is from studies on the limb and trunk bones of mesodermal origin. The skeletogenesis using CNCCs, and the morphogenesis of cranial bone formation, are not very well understood, particularly at the tissue level, at least in part due to the lack of 3-D microscale tools to model and manipulate cranial skeletal tissues in vitro.

Recent studies investigating cranial neural crest cell biology utilize 2-D monolayer culture models, which do not replicate the native, three-dimensionally defined microenvironments [21–23]. In this study, we created a broadly applicable platform that allows the direct differentiation of multipotent progenitor cells, including those of neural crest origin. We produced 3-D tissue model structures with relatively high throughput efficiency to mimic the osteogenic differentiation conditions of the mammalian post-migratory CNCCs (Fig. 1). The objective was to recapitulate the in vivo development of cranial dermal bone tissue from CNCCs in well-defined 3-D bio-mimicking hydrogel units. Such a platform provides in vitro study models for embryonic craniofacial disorders, where our understanding of etiology is limited, and few adequate animal disease models exist. To this purpose, we have developed an array of microenvironments allowing successful 3-D direct differentiation of neural crest cells, forming cranial skeletal tissues and mimicking the embryonic phases of organogenesis.

2. Materials and methods

2.1. Mouse cranial neural crest cell isolation and culture

Mouse cranial neural crest cells were isolated according to Etchevers [24] under Harvard IACUC, Animal Experimentation Protocol No 26-04. Briefly, frontonasal, maxillary and mandibular prominences of E10.5 mouse embryos were dissected into small pieces in a petri dish containing DMEM/F12 media (Life Technologies) with 1% penicillin–streptomycin (Life Technologies). These tissue blocks were digested for 5 min in a mixture of warm 0.1% collagenase (Sigma) and 0.025% trypsin (Thermo Scientific), while being pipetted gently up and down to generate single cell suspension of mouse CNCCs. These cells were washed with fresh medium to stop the digestion, counted and seeded in laminin-coated plates. Cells were maintained and expanded in a monolayer culture in DMEM/F12 media with N2 supplement (Life Technologies), 10 ng/ml EGF and 10 ng/ml bFGF recombinant proteins (R&D Systems).

2.2. Synthesis of methacrylated gelatin hydrogel

Gelatin (Sigma) was dissolved in 50 °C phosphate buffered saline (PBS) with 10% (w/v) of final concentration. Methacrylic anhydride (Sigma) was added (0.8 ml/g) drop wise to the dissolved gelatin and stirred for two and a half hours. The unreacted methacrylic anhydride was dialyzed, and the final product was lyophilized. Methacrylation was monitored and controlled with NMR analysis (Oxford Instruments, NMR AS600) in deuterium oxide (Supplementary Fig. 1).

2.3. Cell encapsulation

Cell-encapsulated 3-D hydrogels were generated using methacrylated gelatin (GeMA) as a prepolymer solution. CNCCs between passage 3 and 5 were resuspended in 5% (w/v) GeMA prepolymer solution containing 0.3% (w/v) 2-hydroxy-1-(4-hydroxyethoxy)phosphoryl)-2-methyl-1-propanone photoinitiator (Irgacure 2959; CIBA Chemicals) with the cell densities of 1 × 10^6, 5 × 10^6, 1 × 10^7 or 4 × 10^7 cells/ml. The mixture of the
cell-prepolymer solution was placed between 150 μm-thick spacers and covered with a glass coverslip (Fig. 1). The geometry of the hydrogel units was shaped by a photomask with circular motifs of 500 μm in diameter, placed on top of the glass coverslip. The prepolymer solution with cells was crosslinked with UV light (1 mW/cm²) for 20 s, and the excess uncrosslinked polymer solution was washed out with PBS. The resulting cell-encapsulated 3-D hydrogels were cultured in osteogenic media (OM) composed of alpha-MEM (Life Technologies), 10% fetal bovine serum (Life Technologies), 100 U/mL penicillin (Life Technologies), 100 mg/mL streptomycin (Life Technologies), 100 nM dexamethasone (Sigma), 10 nM β-glycerophosphate (Sigma), 200 μM ascorbic acid (Sigma) and 50 ng/mL BMP2 (R&D Systems) for direct differentiation toward osteogenic lineage. These cell-encapsulated 3-D hydrogels were harvested weekly for three weeks for further analysis. 3-D hydrogel samples cultured in the neural crest growth media (control media, CM) were used as controls.

2.4. Characterization of cranial neural crest cells

Prior to 3-D hydrogel encapsulation, the isolated and monolayer-expanded post-migratory CNCCs were characterized with ectoderm- and mesenchyme-specific cell surface markers. Cells were stained with p75 antibody conjugated with fluorescein isothiocyanate (FITC) (Abcam) and CD73 antibody conjugated with phycoerythrin (PE) (BD Biosciences) in 1% BSA solution for 40 min at 4 °C and analyzed using flow cytometry (BD FACs Calibur) and FlowJo software (Fig. 2A). Cells stained with IgG FITC and IgG PE were used as negative controls. The viability and proliferation of the encapsulated CNCCs in 3-D in vitro culture were assessed with Live-Dead staining (Life Technologies).

2.5. Quantitative real-time PCR

Total RNA (3 replicates for each group) was extracted by TRIzol® (Life Technologies) and RNeasy MINI kit with QIAshedder columns (Qiagen) according to the manufacturer’s instructions. After extraction, total RNA was resuspended in the final volume of 30 μl with RNase-free water and quantified using spectrophotometer (Nanodrop ND-1000, Delaware, USA). For the best results in the PCR array, all RNA samples were selected for purity using an A260/A280 UV spectrophotometry ratio greater the 1.99. 1 μg of total RNA was used for the reverse transcription reaction using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Amplification and detection were carried out using SYBR Green (Kapa Biosystems) with Eppendorf Mastercycler using 2-step cycle for 40 cycles. Primer sequences: (i) GAPDH Forward (5'-CTA CAC TGA GCA GCC AGG TTT CTC-3') Reverse (5'-TTG TCA TAC CAG GAA ATG AGC TT-3'), (ii) p75 Forward (5'-GCA TGG TAG AGC GGA CC-3') Reverse (5'-CCG TGA AGC CCT TAC ATC CC-3') (iii) Sox9 Forward (5'-AGG TCA CCA GAC CCT GAG AA-3') Reverse (5'-TCC TAG CAA TGT CCA TCT TC-3'), (iv) Osterix Forward (5'-CTG CTT GCT GAA GAA GCT C-3') Reverse (5'-TTG TTG GTG CCT TCT CCT C-3'), (v) Osteocalcin Forward (5'-CTG ACA AAG CCT TCA TGT CCA A-3') Reverse (5'-GCG CCG GAG TCT GTG CAC TA-3'), (vi) Bone Sialoprotein Forward (5'-GAG GAG GGC AGT GCT TCT C-3') Reverse (5'-AGT GGG GTA GAT GTG GGG TT-3'), (vii) Alkaline phosphatase Forward (5'-AGT TAC TGG CGA CAC GAA CC-3') Reverse (5'-GAG TGG TGT TGC ATG CAC AC-3'), (viii) AggreCan Forward (5'-TGG CTT CTT CAG GAA CCA GCT C-3') Reverse (5'-TTG TGG TGG TCG CTG CTC CT-3'), (ix) Collagen Type 2 Forward (5'-CAC AAC CAA CTA AGC CCA AGC-3') Reverse (5'-AGA CTG CCT CCA GAG AGC C-3')

mRNA expressions were assayed in triplicate for each sample and normalized to GAPDH housekeeping gene expressions to calculate ΔCT. The undifferentiated and unencapsulated neural crest cells were used as control samples to calculate the relative gene expression levels in fold change (2^ΔΔCT value).

2.6. Immunohistochemistry

For each time point, samples were fixed in 4% paraformaldehyde solution for 20 min, permeabilized with 0.1% TritonX-100 (Sigma) and blocked with 1% bovine serum albumin for 2 h at room temperature. Primary antibodies for Osterix (OSX) (Abcam), RUNX2 (Novus-Biologicals), Osteopontin (OPN) (GenWay Biotech), Osteocalcin (OCN) (EMD Millipore), bone sialoprotein (BSP) (Bioss) and Ki67 (Abcam) were used at the concentrations recommended by the manufacturers, and the hydrogel samples were incubated with the antibodies overnight at 4 °C. AlexaFluor 488 and AlexaFluor 568 (Life Technologies) were used as secondary antibodies. Alexa Fluor 647 Phalloidin (Life Technologies) was used to visualize the actin cytoskeleton. The images were taken with Zeiss LSM 780 confocal microscope.

2.7. Mineralization assay

The mineralization matrixes produced by the osteodifferentiated CNCCs were detected and quantified with alkaline phosphatase staining kit (Sigma) and hydroxyapatite quantifying Osteoimage® (Lonzas) assay, according to manufacturers’ instructions. The mineralization levels in the cell-encapsulated hydrogels were assessed weekly for three weeks. The secreted hydroxyapatite was quantified by the relative fluorescence intensities of the cell-encapsulated hydrogels using Imagej software (NIH, Bethesda, Maryland, USA).

2.8. Image quantification

The unprocessed raw confocal z-stack files were analyzed with Fiji software (ImageJ, NIH, Bethesda, Maryland, USA) with 3-D objects counter plugins. The total number of cells were counted using DAPI staining. For OSX, cells with a positive signal in the nucleus were counted while cells with the positive signal in the cytoplasm were counted for OCN and OPN. Signals above a threshold set by the software were counted as positive and were confirmed manually.

2.9. Freeze-fracture cryo-scanning electron microscopy

Freeze-fracture cryo-SEM imaging was performed with a Zeiss Supra55VP FESEM. A fixed single hydrogel was placed on a sample stub and submerged into a slurry bath of liquid nitrogen. The frozen sample was transferred to a cryo-transfer chamber and was fractured in a vacuum with a sharp blade to expose the cross sections of the sample. The surfaces of the fractured samples were sputter coated with platinum and imaged using the SE2 detector at a voltage of 4 kV while maintained at − 160 °C.

2.10. Statistical analysis

Statistical analyses were performed with GraphPad Prism, version 5 (GraphPad Software, Inc., San Diego). Results were analyzed using analysis of variance with Tukey’s post hoc test for multiple comparisons and Student’s two-tailed t test for single comparisons, with statistical significance set at p < 0.05. Unless otherwise stated, the mean values represent three experiments with two or three channels per experiment, and the error bars represent the standard error of mean.
Fig. 2. The characterizations of the CNCCs prior and after hydrogel encapsulation. (A) FACS analysis of the CNCCs prior to the encapsulation in 3-D hydrogels. 63.21% ± 20.28 of cells were p75 positive indicating the neural crest cells phenotype (left), and 66.22% ± 11.64 were CD73 positive showing mesenchymal lineage characteristic (right). Corresponding IgG staining was used as a negative control (blue contour). (B) The Live–Dead staining of neural crest cells encapsulated in the 3-D hydrogel. Live cells were stained for green and dead cell are shown in red. (C) The proliferation capacity of neural crest cells was evaluated with Ki67 staining after 1 week of encapsulation in the 3-D hydrogels. Proliferating cells express Ki67 (red) in the nuclei, co-localizing with DAPI (blue). The cell cytoskeletons were shown with phalloidin staining (green). (D–I) Effects of cell encapsulation density on osteogenic differentiation of primary CNCCs. (D–F) Bright field images of the cell-encapsulated hydrogels generated using different cell densities. (G–I) The immunocytochemistry results for OSX (green) and cytoskeleton (phalloidin, magenta) in 3-week osteo-differentiated hydrogels showed that high cell density is more favorable for osteogenic differentiation. Scale bars 100 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3. Results

3.1. Characterization of hydrogel and neural crest cells

3-D cellular microenvironments were designed from highly biocompatible gelatin-based hydrogels, supporting cell viability and growth [25]. Gelatin was methacrylated and lyophilized for the generation of UV photo-crosslinkable hydrogels (Supplementary Fig. 1). Mouse CNCCs were isolated from the frontonasal, maxillary and mandibular prominences of E10.5 mouse embryos and expanded in the monolayer culture prior to 3-D differentiation (Fig. 1). The CNCCs before encapsulation showed 63.21% ± 20.28 positivity for ectodermal marker p75 and 66.22% ± 11.64 positivity for mesodermal marker CD73 confirming the mesenchymal-neural phenotype as previously shown (Fig. 2A) [26,27]. The effect of the encapsulation process on cell viability were assessed with Live–Dead staining (Fig. 2B). More than 90% of encapsulated cells were alive after the formation of 3-D constructs. The encapsulation process or the hydrogel itself do not restrict or alter the proliferation capacity of neural crest cells as shown with Ki67 immunostaining (Fig. 2C). The encapsulated cells were then differentiated toward the osteogenic lineage in the 3-D microenvironment to evaluate their potential for ectomesenchymal transformation and the natural state osteogenesis. We investigated the effect of the cell encapsulation density on cranial osteogenesis under four different cell concentrations (1 × 10^7 to 4 × 10^7 cells/ml). Cell densities above 10^7 cells/ml showed significant expressions of the osteogenic markers (Fig. 2D–I), whereas the lower cell concentrations resulted with poor osteogenic morphology. All following experiments were performed at a cell density of 4 × 10^7 cell/ml.

3.2. Monitoring the osteogenic differentiation of cranial neural crest cells in 3-D platform

3-D differentiated CNCCs were analyzed for chondrogenic and osteogenic gene expressions with qRT-PCR (Fig. 3). The neural crest marker p75 only maintained a high level of expression in the cells cultured in the neural crest cell-specific media and its expression decreased by more than 70% after the first week of culture in the osteogenic media (Fig. 3A). Since CNCCs have the potential to differentiate into chondrocytes, we also checked the expression level of Sox9, collagen type II, and aggrecan. Sox9 is required for chondrogenesis, as it induces the expressions of cartilage-specific extracellular matrix molecules, such as collagen type II, IX and XI and aggrecan [28–31]. The Sox9 expression was slightly increased up to the second week but eventually decreased below the original level, confirming the cells were not in the course of chondrogenic differentiation (Fig. 3B) [32,33]. The expression of collagen type II and aggrecan did not show differences in expression between the control and the osteogenic samples (Fig. 3C–D). To evaluate the osteogenic differentiation, expression levels of four major bone specific genes, Osterix (Ox), also known as Sp7), Alkaline phosphatase (Alp), Osteocalcin (Ocn) and Bone sialoprotein (Bsp) were analyzed. All four genes showed dramatic increase in their expression when cultured in the osteogenic differentiation media, especially by the third week of incubation, where markers indicated the presence of mixed population of osteoblasts and osteocytes (Fig. 3E–H).

The expressions of bone-specific markers of 3-D encapsulated CNCC were also evaluated at the protein level for three weeks with immunocytochemistry (Fig. 4). The differentiation of CNCCs to bone cells was demonstrated by the accumulation of OSX (Fig. 4A and D), OPN (Fig. 4B and E) and OCN proteins (Fig. 4C and F). The expression of the early osteogenic marker RUNX2 was higher in cells cultured in the osteogenic media compared to the control cells at the initial differentiation phase, and RUNX2 expression later gradually decreased as the bone tissue started to form (Fig. 4G and Supplementary Fig. 2). On the other hand, more than 30% of encapsulated cells cultured in the osteogenic media showed OSX expression in the nucleus after three weeks of incubation (Fig. 4D). The OPN and OCN protein depositions could be detected in the cytoplasm and the extracellular matrix of osteogenic cells cultured for 3 weeks in osteogenic media (Fig. 4E and F), as in the late development phase of the in vivo bone tissue, confirming the successful osteogenic differentiation of the CNCCs using the 3-D hydrogel platform. We detected BSP depositions in the peripheral parts of the 3-D hydrogels starting from week 1, which gradually expanded its expression toward the core parts of the hydrogel during the 3-week osteogenic differentiation period (Supplementary Fig. 2). By week 3, BSP accumulation could be observed around the lacunae of the osteogenic cells.

3.3. Osteogenic mineralization and the morphological analysis of the neo-tissues

ALP expression starts from the early osteogenic differentiation steps and continues through the maturation of the newly formed bone tissues. The engineered 3-D cell-encapsulated hydrogels were analyzed for mineralization by examining the ALP activity in the cells differentiated over the 3-week culture period (Fig. 5A). The cells cultured in the osteogenic condition inside the hydrogels exhibited high level of ALP activity after two weeks, which increased 2.56 folds by week 3. The undifferentiated cells in the control hydrogels did not show any ALP activity (Fig. 5A). We evaluated the functionality of osteo-differentiated CNCCs also with mineralization of hydrogels and the secretion of hydroxyapatite. The newly secreted hydroxyapatite in the 3-D cell-encapsulated hydrogels was quantified with Osteoimage® Mineralization assay (Fig. 5B). The secretion of hydroxyapatite crystals was detected in the osteogenic hydrogels starting from week 1, which gradually increased with further osteogenic differentiation and maturation by week 3. The undifferentiated control hydrogels did not show any fluorescent signals indicative of hydroxyapatite secretion.

Importantly, osteo-differentiated CNCC encapsulated hydrogels showed formation of in vivo-grade osteo lacuna structures, characteristic of the living bone tissue with embedded mature osteocytes (Fig. 6; Supplementary Fig. 3). Within the 3-D constructs osteo-differentiated cells also build intercellular connections providing cell–cell interactions (Fig. 6C, Supplementary Video 1 and Video 2). Morphological analysis of the osteo-differentiated hydrogels with FESEM revealed round, osteocyte-shaped cells located in the lacunae, and also mature osteoblasts throughout the hydrogel (Fig. 7A–C). Moreover, we observed differentiated bone cells with a large number of long projections called filopodia extending from the cell body, which is another key morphological characteristic of the mature osteocytes (Fig. 7A, red colored) [34].

4. Discussion

Along with many other important roles in the embryonic development, neural crest cells are essential for the proper development of the vertebrate head. The human skull is composed of more than twenty intricately shaped and interconnected bones, which the majority is originated from the neural crest cells. Thus, deeper knowledge of the cranial neural crest cell behavior, and eventually how they properly differentiate to bone, is essential for understanding both the normal head development and the myriad of craniofacial abnormal conditions present in up to one-third of all congenital birth defects in humans [35]. The vertebrate cranium is also an important and unique structure from the evolutionary
perspective as it represents one of the innovations that defines the vertebrate lineage, and vertebrate heads display a variety of adaptive and species-specific characteristics [36]. 3-D differentiation culture systems support efficient tissue formation and allow the manipulation of the cells in their native-like microenvironments [23]. Notably, our work demonstrates the generation of 3-D cellular niches for the efficient differentiation of CNCCs while maintaining their viability and proliferation capacity. To achieve a 3-D in vitro differentiation platform that recapitulates the in vivo osteogenic differentiation of CNCCs, we monitored and analyzed the developmental phases of cranial bone in our system. In the course of embryogenesis, the neural crest cells have a unique status as these cells of neuroectodermal origin can give rise to the specialized cell types that are typically derived from the mesodermal germ layer, such as connective tissue, cartilage and bones [26]. In this study, after monolayer amplification we encapsulated

Fig. 3. qRT-PCR analysis of the neural crest-specific gene p75 and bone and cartilage-specific genes in cells cultured in control or osteogenic media for three weeks (n = 3 for each sample). Error bar indicates standard error. (A) p75 was highly expressed in encapsulated cells cultured in control media. (B) The expression of cartilage-specific marker Sox9 did not change in both control and osteogenic media. (C) Col II expression slightly decreased after week 2. (D) Expression of chondrogenic marker aggrecan did not alter significantly during the differentiation. (E-H) Bone specific marker Osx, Alp, Ocn, and Bsp were highly expressed in the cells cultured in osteogenic media especially at the third week of incubation. (One asterisks denote significance at $P < 0.05$, two asterisks denote significance at $P < 0.01$, Student t-test).
post-migratory CNCCs expressing both neural and mesenchymal markers, p75 and CD73 (Fig. 2A). Clonal study performed on neural crest cells demonstrated that those cells are mostly formed as heterogeneous populations consisting of multiple progenitor cell types (e.g., melanocytes, glia, neuron, and myofibroblast) [37]. To reach the high CNCC differentiation yield, we investigated the effects of hydrogel properties and differential cell density in micro-tissue formation. Substrate stiffness and focal polarization of progenitor cells in conventional 2-D culture conditions dramatically affect the fate and physiology of cells [22,38]. The 3-D platform that we generated allows tuning of both hydrogel stiffness and cell encapsulation density. According to our findings, high cell-to-cell contact dramatically assists the osteogenic differentiation in the microscale hydrogels. The highest level of cell-to-cell contacts and the native-like osteogenic differentiation in both morphological and molecular aspects were achieved in our 3-D culture system with the cell density of 4×10^7 cell/ml.

We systematically investigated the intramembranous osteogenic differentiation progress of CNCCs in our 3-D platform by analyzing the expression patterns of multiple neural crest and skeletogenic markers, including p75, Sox9, Col II, aggrecan, Runx2, Osx, Alp, Ocn, Opn and Bsp (Fig. 3 and 4). Cells encapsulated in hydrogels cultured in osteogenic media lost the expression of p75 and even in early phase (week 1) are committed to osteogenic lineage. On the other hand, the ectodermal phenotype of CNCCs in control condition resumed up to week 2 with elevated expression of p75. Intramembranous ossification differs from the endochondral ossification, as it lacks the formation of hypertrophic cartilage template prior to generating mineralized calcified bone [39]. Sox9 is a well-known marker for chondrogenic cells in the process of endochondral ossification, but it also plays an important role in the differentiation of CNCCs to early bone progenitor cells during intramembranous ossification [19]. Accordingly, we detected the elevated levels of Sox9 expression during the early phase of the osteogenic differentiation, which then decreased below the initial level at the later stages of the culture process (Fig. 3B). We also evaluated the chondrogenesis for potential endochondral ossification with regulation of Col II and aggrecan expression. After week 2, Col II expression slightly decreased in osteogenic conditions and aggrecan expression did not alter significantly for both study groups. These findings indicate there is no chondrogenic tissue formation and the osteogenic differentiation is through the intramembranous course. Early phases of the osteogenesis process are directly regulated by Runx2, an early marker and regulator of
many other osteoblast markers, such as Bsp, Ocn and Alp [19]. In our 3-D differentiation system, RUNX2 was expressed during the first week of osteogenesis and its expression decreased significantly at the later stages of bone tissue culture (Fig. 4G). These later stage osteogenically committed cells no longer require RUNX2 for further ossification [40]. All of the later stage osteogenic markers (e.g., Osx, Ocn, Opn, BSP) suggest that skeletal development process was successfully recapitulated and led to the formation of mature osteoblasts and osteocytes. During the second and third week of 3-D osteo-differentiation CNCCs demonstrate the expression of (i) OSX, a bone-specific transcription factor that is specifically expressed in osteoblasts of all skeletal elements [41], (ii) OCN, an osteoblast-derived hormone expressed only in fully differentiated osteoblasts and osteocytes, (iii) OPN, a late osteogenic

Fig. 5. The osteogenic mineralization in the control and osteo-differentiated cell-encapsulated 3-D hydrogels were determined and quantified at weeks 1, 2 and 3 with alkaline phosphatase (A), and hydroxyapatite (B) staining. The osteogenic differentiation of CNCCs showed hydroxyapatite secretion and mineralized the hydrogels gradually after week 1 (C). Scale bars 100 µm.
protein that regulates the biomineralization and bone remodelling [42,43] and (iv) BSP, a non-collagenous protein that is a key component of the bone extracellular matrix [44,45] (Fig. 3E, F, Fig. 4B, C, E, F, G and Supplementary Fig. 2). The formation of mature bone tissue is further characterized by the mineralization in terms of hydroxyapatite deposition in the newly formed extracellular matrix [46]. We demonstrate the ability of newly differentiated osteogenic cells to mineralize the hydrogels with hydroxyapatite from second week. Similarly, high expression of alkaline phosphatase (ALP), which is highly involved in the mineralization of neo-tissues [47] supports the osteogenesis and in vitro tissue maturation (Fig. 5). Another decisive method to evaluate the formation of bone tissue and the emergence of the differentiated osteoblasts and osteocytes is to analyze their morphologies compared to the native mature bone tissues with osteoblasts and osteocytes embedded. As early as one week after the initiation of the 3-D osteogenic differentiation process, the cell morphology of the neural crest cells began to change to reflect their differentiation into osteoblasts (Figs. 6, 7, Supplementary Video 1 and Video 2). The appearance of the lacunae cavities containing mature osteoblasts and osteocytes within the hydrogel is strikingly similar to those seen in the natural bone tissue [48]. Such cell morphology changes during the course of osteogenesis can be observed through the freeze-fractured FESEM imaging. While the newly formed, larger osteoblast cells were tightly embedded in the hydrogel matrix (Fig. 7B), their morphology changed to the small and round
osteocyte-looking cells that reside in the spacious lacunae at later stages, and send multiple filopodia extensions through the surrounding matrix and the neighboring bone cells (Fig. 7A). Filopodia penetrate the bone tissue through canal-like structures called bone canaliculi and are believed to sense biomechanical stress and communicate with other bone cells within the same tissue [34]. These cellular projections also observed in our mature 3-D bone tissues extended beyond the immediate lacunae boundaries and continued through the surrounding matrix toward other neighboring bone cells (Fig. 7A, white arrowheads). These cell–cell interactions were clearly detected in the cell-encapsulated 3-D hydrogels, starting from the second week of osteogenic differentiation.

In summary, we demonstrate a 3-D differentiation platform that enables to recapitulate an important developmental process in vitro. The platform we generated successfully supports the intramembranous ossification of cranial bone tissue using primary CNCCs. This platform has the potential to be used in a broader context, especially when combined with other bioengineering technologies [6,8,49,50]. This platform can be easily scaled up by assembly technologies, and be utilized in bottom-up tissue engineering, enabling to generate larger, multi-hydrogel constructs needed to understand the morphogenesis of specific skeletal structures. Neural crest cells differentiated from induced pluripotent stem cells (iPSCs) that are derived from human patients with craniofacial diseases could be used to monitor disease-specific phenotypes during osteogenic differentiation and eventually bone and other skeletal tissue formations for medical and pharmaceutical research. The adaptive and flexible nature of the platform will also allow it to be used to investigate the evolution of the diverse craniofacial bone shapes by including morphogenic factors in the specific regions of the assembled multi-hydrogels to recapitulate and manipulate the morphogenic processes in vitro.

Acknowledgements

UD acknowledges that this material is based in part upon work supported by the NSF CAREER Award Number 1150733, NIH R01EB015776, NIH R15HL115556 and NIH R21HL112114. AA acknowledges NSF 1257122 and Templeton Foundation RFP-12-01. Dr. U Demirci is a founder of, and has an equity interest in: (i) DxNow Inc., a company that is developing microfluidic and imaging technologies for point-of-care diagnostic solutions, and (ii) Koek Biotech, a company that is developing microfluidic IVF technologies for clinical solutions. U.D.’s interests were viewed and managed in accordance with the conflict of interest policies. The other authors indicated no potential conflicts of interest. Authors thank to Yesim Bagatur (M.S.) and Zeynep Esencan (M.S.) for their technical assistance.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.actbio.2015.12.004.